Epoxy Resin Nanocomposites: The Influence of Interface Modification on the Dispersion Structure—A Small-Angle-X-ray-Scattering Study

Author:

Feichtenschlager Bernhard,Pabisch Silvia,Svehla Jakob,Peterlik HerwigORCID,Sajjad Muhammad,Koch Thomas,Kickelbick GuidoORCID

Abstract

The surface functionalization of inorganic nanoparticles is an important tool for the production of homogeneous nanocomposites. The chemical adaptation of the nano-filler surface can lead to effective weak to strong interactions between the fillers and the organic matrix. Here we present a detailed systematic study of different surface-functionalized particles in combination with a SAXS method for the systematic investigation of the interface interaction in the development of epoxy nanocomposites. We investigated the effect of surface modification of spherical SiO2 nanoparticles with 9 nm and 72 nm diameter and crystalline ZrO2 nanoparticles with 22 nm diameter on the homogeneous distribution of the fillers in diethylenetriamine (DETA) cured bisphenol-F-diglycidylether epoxy resin nanocomposites. Unmodified nanoparticles were compared with surface-modified oxides having diethylene glycol monomethyl ethers (DEG), 1,2-diols, or epoxy groups attached to the surface. The influence of surface modification on dispersion quality was investigated by transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS) for inorganic filler contents of 3, 5 and 10 wt%. It was shown that the dispersion quality can be optimized by varying the coupling agent end group to obtain homogeneous and transparent nanomaterials. UV/VIS measurements confirmed the transparency/translucency of the obtained materials. The relationship between particle–matrix interaction and particle–particle interaction plays a decisive role in homogeneity and is controlled by the surface groups as well as by the type, size, and morphology of the nanoparticles themselves.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3