Development of a Portable Device for Surface Traction Characterization at the Shoe–Floor Interface

Author:

Gupta ShubhamORCID,Malviya AyushORCID,Chatterjee SubhodipORCID,Chanda Arnab

Abstract

Slip and fall accidents are widespread in workplaces and on walkways. Slipping is generally initiated by a sudden change in the flooring properties or due to a low available traction at the shoe–floor interface. To measure shoe-floor traction, mechanical slip and fall risk estimation devices are typically employed. However, to date, such existing devices are lab-based, bulky, and are unable to simulate realistic slip biomechanics and measure whole footwear traction in realistic contaminated floorings at the same time. Moreover, these devices are expensive and not available in low- or lower-middle-income countries with limited awareness regarding slip testing. To overcome these challenges, in this work, a biofidelic, portable, and low-cost slip testing device was developed. A strategic three-part subassembly was designed for the application of normal load, slipping speed, and heel strike angle for its modularity. The developed slip tester was extensively tested and validated for its performance using 10 formal footwears and two floorings, under dry and wet conditions. The results indicated that the slip tester was accurate, repeatable, and reliable in differentiating traction measurements across varying combinations of shoes, contaminants, and floorings. The instrumentation performance of the slip tester was found to also capture the differences between different shoe tread patterns in the presence of fluid films. The developed device is anticipated to significantly impact the clinical, industrial, and commercial performance testing of footwear traction in realistic slippery flooring conditions, especially in the low- or middle-income countries.

Funder

SERB-DST

Publisher

MDPI AG

Subject

General Health Professions

Reference36 articles.

1. U.S. Bureau of Labor Statistics (2022, April 13). Number of Nonfatal Occupational Injuries and Illnesses Involving Days Away from Work by Industry and Selected Events or Exposures Leading to Injury or Illness, Private Industry, Available online: https://www.cdc.gov/niosh/topics/violence/fastfacts.html.

2. Nonfatal occupational injuries from slips, trips, and falls among older workers treated in hospital emergency departments, United States 1998;Layne;Am. J. Ind. Med.,2004

3. Identification of critical traction values for maximum athletic performance;Luo;Footwear Sci.,2011

4. Circumstances and consequences of falls in independent community-dwelling older adults;Berg;Age Ageing,1997

5. Evaluation of a comprehensive slip, trip and fall prevention programme for hospital employees;Bell;Ergonomics,2009

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3