A Route towards Durable Underwater Stable Superhydrophobic Surfaces: PET-Reinforced Candle Soot Layers

Author:

Wu Xinghua1,Han Zhaokang1ORCID,Wang Yuchao1,Pan Yutong1,Jie Xiaohua1

Affiliation:

1. School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China

Abstract

Superhydrophobic coating is widely used due to its waterproof and self-cleaning properties. Carbon soot (CS) nanoparticles are naturally superhydrophobic and non-toxic which are superior to other superhydrophobic coating. However, the weak binding force of the CS nanoparticle layers hinders their practical application. In this study, micro-nanostructured PET-CS superhydrophobic coatings were prepared by a simple method. The obtained coatings presented durable superhydrophobicity and underwater stability, which are superior to PDMS-CS coatings and CS layers. The coating surfaces demonstrated superhydrophobicity under a water pressure of 13.72 kPa for up to 16 days. The surface could withstand water flush for more than 15 min. The coatings also demonstrated good mechanical stability and maintained superhydrophobicity after an abrasion length of 8 m. The stable long-lasting underwater superhydrophobic surface is of great importance for marine applications.

Funder

National Natural Science Foundation of China

Project of Smart Medical Innovation and Technology Center of Guangdong University of Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3