Temperature Effects in the Initial Stages of Heteroepitaxial Film Growth

Author:

To Tung B. T.ORCID,Aarão Reis Fábio D. A.ORCID

Abstract

Kinetic Monte Carlo simulations of a model of thin film heteroepitaxy are performed to investigate the effects of the deposition temperature in the initial growth stages. Broad ranges of the rates of surface processes are used to model materials with several activation energies and several temperature changes, in conditions of larger diffusivity on the substrate in comparison with other film layers. When films with the same coverage are compared, the roughness increases with the deposition temperature in the regimes of island growth, coalescence, and initial formation of the continuous films. Concomitantly, the position of the minimum of the autocorrelation function is displaced to larger sizes. These apparently universal trends are consequences of the formation of wider and taller islands, and are observed with or without Ehrlich-Schwöebel barriers for adatom diffusion at step edges. The roughness increase with temperature qualitatively matches the observations of recent works on the deposition of inorganic and organic materials. In thicker films, simulations with some parameter sets show the decrease of roughness with temperature. In these cases, a re-entrance of roughness may be observed in the initial formation of the continuous films.

Funder

Coordenação de Aperfeicoamento de Pessoal de Nível Superior

National Council for Scientific and Technological Development

Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro

Publisher

MDPI AG

Reference45 articles.

1. Materials Science of Thin Films—Deposition and Structure;Ohring,2001

2. Islands, Mounds, and Atoms;Michely,2003

3. Physics of Crystal Growth;Pimpinelli,1998

4. Nucleation theory and the early stages of thin film growth

5. Morphological evolution during epitaxial thin film growth: Formation of 2D islands and 3D mounds

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3