Abstract
Graphene-like nanoribbons (GLNRs) were fabricated (length—20 μm; width—2 μm) and subjected to blast-like pulsed pressure >1.5 GPa (pulse speed ≈1 Mach, impulse duration, ≈µs) to examine the amount of absorption. GLNRs prepared by the chemical vapor deposition technique via controlled biomass combustion were subjected to investigate the structure–property characteristics using microspectroscopic techniques. Following this, GLNRs were employed to high strain rate (HSR) studies with the help of the technique known as split Hopkinson pressure bar (SHPB) to evaluate numerous dynamic parameters. The parameters were extracted from variations in the stress and strain rates. Their analysis provided insight into the damping response of blast energy within GLNRs. By and large, the impact generated modified the microstructure, exhibiting modifications in the number of layers, conjugated loops, and dynamic disorder. Signal processing analysis carried out for incident and transmitted impulse pressure revealed an interaction mechanism of shock wave with GLNR. Details are presented.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献