Electrochemical Detection of Dinitrobenzene on Silicon Electrodes: Toward Explosives Sensors

Author:

Dief Essam M.ORCID,Hoffmann Natasha,Darwish Nadim

Abstract

Detection of explosives is vital for protection and criminal investigations, and developing novel explosives’ sensors stands at the forefront of the analytical and forensic chemistry endeavors. Due to the presence of terminal nitro groups that can be electrochemically reduced, nitroaromatic compounds (NACs) have been an analytical target for explosives’ electrochemical sensors. Various electrode materials have been used to detect NACs in solution, including glassy carbon electrodes (GCE), platinum (Pt), and gold (Au) electrodes, by tracking the reversible oxidation/reduction properties of the NACs on these electrodes. Here, we show that the reduction of dinitrobenzene (DNB) on oxide-free silicon (Si–H) electrodes is irreversible with two reduction peaks that disappear within the successive voltammetric scanning. AFM imaging showed the formation of a polymeric film whose thickness scales up with the DNB concentration. This suggest that Si–H surfaces can serve as DNB sensors and possibly other explosive substances. Cyclic voltammetry (CV) measurements showed that the limit of detection (LoD) on Si–H is one order of magnitude lower than that obtained on GCE. In addition, EIS measurements showed that the LoD of DNB on Si–H is two orders of magnitude lower than the CV method. The fact that a Si–H surface can be used to track the presence of DNB makes it a suitable surface to be implemented as a sensing platform. To translate this concept into a sensor, however, it would require engineering and fabrication prospect to be compatible with the current semiconductor technologies.

Publisher

MDPI AG

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3