Biosynthesis, Optical and Magnetic Properties of Fe-Doped ZnO/C Nanoparticles

Author:

Abd-Elkader Omar H.1ORCID,Nasrallah Mai2,Aleya Lotfi3,Nasrallah Mohamed4

Affiliation:

1. Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

2. Faculty of Medicine, Ain Shams University, El-Khalyfa El-Mamoun Street, Abbassia, Cairo 11774, Egypt

3. Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne, Franche-Comté University, CEDEX, F-25030 Besançon, France

4. Faculty of Medicine, Ibn Sina University, Aljerif West Block (88), Khartoum 11115, Sudan

Abstract

Employing a self-combustion method supported by egg white, pure and Fe-doped ZnO/C nanoparticles successfully biosynthesized. XRD, FTIR, Raman, SEM/EDS and TEM measurements were used to characterize the pure and doped systems. The materials under investigation’s optical, surface and magnetic characteristics were recognized. Only one zinc oxide crystalline phase exhibiting a hexagonal shape comparable to wurtzite was present in the systems of pure and Fe-doped ZnO/C. Due to the variation in ionic radii, doping ZnO/C system with iron ions resulted in a decrease in unit cell volume; it revealed that ions of iron had been integrated into the lattice of zinc oxides. FTIR analysis shows characteristic vibration modes related to ZnO and that of carbon groups, confirming the formation of the ZnO/C system. In a perfect match with the IR data, which represent two bands at 1120 and 1399 cm−1 attributed to carbon groups, the Raman analysis shows that in the freshly manufactured materials, sp2 and disordered G and D carbon bands have both graphitized. Fe-doping of the ZnO/C system with different amounts of iron ions resulted in the change in the size and agglomeration of the particle’s system. The doped ZnO/C system has a surface area smaller than that of the pure system due to the decrease in both the mean pore radius and the total pore volume. Doping the ZnO/C system with 2 and 5 mol% Fe2O3 resulted in optical band gaps expanding from 3.17 eV to 3.27 eV and 3.57 eV, respectively. Due to the doping with iron ions, a magnetic transition from a fully diamagnetic state to a slightly ferromagnetic state was detected.

Funder

King Saud University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Subject

General Health Professions

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3