Evaluation of the Feasibility of the Prediction of the Surface Morphologiesof AWJ-Milled Pockets by Statistical Methods Based on Multiple Roughness Indicators

Author:

Karkalos Nikolaos E.1,Thangaraj Muthuramalingam12ORCID,Karmiris-Obratański Panagiotis1ORCID

Affiliation:

1. Advanced Manufacturing Laboratory, Department of Manufacturing Systems, Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, 30-059 Kraków, Poland

2. Department of Mechatronics Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India

Abstract

Improvement of the surface quality of machined parts is essential in order to avoid excessive and costly post-processing. Although non-conventional processes can efficiently carry out the machining of difficult-to-cut materials with high productivity, they may also, for various reasons, be related to increased surface roughness. In order to optimize the surface quality of generated surfaces in a reliable way, surface profiles obtained during these processes must be adequately modeled. However, given that most studies have focused on Ra or Rz indicators or are based on the assumption of a normal distribution for the profile heights, relevant models cannot accurately represent the surface characteristics that exist in a real machined surface with a high degree of accuracy. Thus, in the present study, a new modeling approach based on the use of a statistical probability distribution for the surface profile height is proposed. After six different distributions were evaluated on the basis of a three-stage procedure involving different roughness indicators pertaining to the abrasive waterjet (AWJ) milling of pockets, it was found that, although it is not possible to model the nominal values of every roughness parameter simultaneously, in several cases, it is possible to approximate the values of critical indicators such as Ra, Rz, Rsk, Rku and Rp/Rv ratio by Weibull distribution with a sufficient degree of accuracy.

Funder

Polish National Agency for Academic Exchange

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3