Material Structure and Mechanical Properties of Silicon Nitride and Silicon Oxynitride Thin Films Deposited by Plasma Enhanced Chemical Vapor Deposition

Author:

Gan Zhenghao,Wang Changzheng,Chen Zhong

Abstract

Silicon nitride and silicon oxynitride thin films are widely used in microelectronic fabrication and microelectromechanical systems (MEMS). Their mechanical properties are important for MEMS structures; however, these properties are rarely reported, particularly the fracture toughness of these films. In this study, silicon nitride and silicon oxynitride thin films were deposited by plasma enhanced chemical vapor deposition (PECVD) under different silane flow rates. The silicon nitride films consisted of mixed amorphous and crystalline Si3N4 phases under the range of silane flow rates investigated in the current study, while the crystallinity increased with silane flow rate in the silicon oxynitride films. The Young’s modulus and hardness of silicon nitride films decreased with increasing silane flow rate. However, for silicon oxynitride films, Young’s modulus decreased slightly with increasing silane flow rate, and the hardness increased considerably due to the formation of a crystalline silicon nitride phase at the high flow rate. Overall, the hardness, Young modulus, and fracture toughness of the silicon nitride films were greater than the ones of silicon oxynitride films, and the main reason lies with the phase composition: the SiNx films were composed of a crystalline Si3N4 phase, while the SiOxNy films were dominated by amorphous Si–O phases. Based on the overall mechanical properties, PECVD silicon nitride films are preferred for structural applications in MEMS devices.

Funder

Ministry of Education - Singapore

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3