Aptameric Fluorescent Biosensors for Liver Cancer Diagnosis

Author:

Park Seonga1,Cho Euni12,Chueng Sy-Tsong Dean3,Yoon June-Sun4ORCID,Lee Taek5,Lee Jin-Ho126ORCID

Affiliation:

1. School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea

2. Department of Information Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea

3. Vitale Biotechnology, Inc., 700 West Park Ave, Perkasie, PA 18944, USA

4. Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea

5. Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Republic of Korea

6. Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea

Abstract

Liver cancer is a prevalent global health concern with a poor 5-year survival rate upon diagnosis. Current diagnostic techniques using the combination of ultrasound, CT scans, MRI, and biopsy have the limitation of detecting detectable liver cancer when the tumor has already progressed to a certain size, often leading to late-stage diagnoses and grim clinical treatment outcomes. To this end, there has been tremendous interest in developing highly sensitive and selective biosensors to analyze related cancer biomarkers in the early stage diagnosis and prescribe appropriate treatment options. Among the various approaches, aptamers are an ideal recognition element as they can specifically bind to target molecules with high affinity. Furthermore, using aptamers, in conjunction with fluorescent moieties, enables the development of highly sensitive biosensors by taking full advantage of structural and functional flexibility. This review will provide a summary and detailed discussion on recent aptamer-based fluorescence biosensors for liver cancer diagnosis. Specifically, the review focuses on two promising detection strategies: (i) Förster resonance energy transfer (FRET) and (ii) metal-enhanced fluorescence for detecting and characterizing protein and miRNA cancer biomarkers.

Funder

National Research Foundation of Korea

Korea government

Kwangwoon University

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3