Electro-Hydraulic Servo-Pumped Active Disturbance Rejection Control in Wind Turbines for Enhanced Safety and Accuracy

Author:

Zhang Tiangui1,Yu Haohui1,Yu Bo12,Ai Chao1,Lou Xiaoxiang3,Xiang Pengjie4,Li Ruilin5,Li Jianchen5

Affiliation:

1. School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China

2. Mechanical and Electrical Engineering, Xinjiang Institute of Engineering, Urumqi 830023, China

3. Ningbo Anson CNC Technique Co., Ltd., Ningbo 315000, China

4. School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China

5. Shenzhen Inovance Technology Co., Ltd., Shenzhen 518000, China

Abstract

Aiming at the high accuracy and high robustness position control of servo pump control in the pitch system of a wind turbine generator, this paper proposes an active disturbance rejection controller (ADRC). The ADRC considers pitch angular velocity and acceleration limits. According to the kinematics principle of the pump-controlled pitch system, the relationship between the pitch angular velocity and acceleration limit and the displacement of the hydraulic cylinder is established. Through the method of theoretical analysis, the nonlinear relationship expression between pitch angle and hydraulic cylinder displacement is obtained, and the linearization of pitch angular velocity control is realized; the formula for b0 (the estimated value of the input gain of the system) of the pump-controlled pitch system is obtained by the method of modeling and analysis, b0 is the key parameter for the design of the ADRC; the stability of the controller parameters is proved through the stability analysis and simulation analysis, and the design of the self-immobilizing controller with pitch angular velocity and acceleration limitation is the completed ADRC design. Finally, a joint simulation platform of AMESim and MATLAB as well as a physical experiment platform of electro-hydraulic servo pump-controlled pitch control is constructed, and the effectiveness of the proposed control method is verified through simulation and experiment. The results show that compared with the unrestricted ADRC and PID, the velocity-acceleration-limited ADRC can effectively improve the control effect of the angular velocity and acceleration of the paddle, smooth the startup process, improve the safety of the system, and have better position control accuracy and anti-jamming ability.

Funder

Science and Technology Research Program of Higher Education Institutions in Hebei Province

Natural Science Foundation of Xinjiang Uygur Autonomous Region

Autonomous Region Colleges and Universities Research Program

Basic Research Funds for Universities of Xinjiang

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3