Growth Substrate Geometry Optimization for the Productive Mechanical Dry Transfer of Carbon Nanotubes

Author:

Butzerin Andre1ORCID,Weikert Sascha2ORCID,Wegener Konrad2ORCID

Affiliation:

1. Institute of Machine Tools and Manufacturing, ETH Zürich, 8092 Zürich, Switzerland

2. inspire AG, 8005 Zürich, Switzerland

Abstract

The selection of growth substrate geometries for the mechanical dry transfer of carbon nanotubes to device substrates depends on the precision of the assembly equipment. Since these geometries play a decisive role in the overall efficiency of the process, an investigation of the most important geometry parameters is carried out. The substrate geometry affects the number of carbon nanotubes suspended during the growth process and the speed of mechanical assembly at the same time. Since those two criteria are interlinked and affect productivity, a meta-model for the growth and selection of the nanotubes is simulated and a time study of the resulting assembly motions is subsequently performed. The geometry parameters are then evaluated based on the total number of suspended carbon nanotubes and the throughput rate, measured in transfers per hour. The accuracy specifications are then taken into account. Depending on the overall accuracy that can be achieved, different offset angles and overlaps between the growth and receiving substrate can be reached, which affect productivity differently for different substrate geometries. To increase the overall productivity, growth substrate designs are adapted to allow fully automated operation. This measure also reduces the frequency of substrate exchanges once all carbon nanotubes have been harvested. The introduction of substrates with multiple, polygonally arranged edges increases the total number of nanotubes that can be harvested. The inclusion of polygonally arranged edges in the initial analysis shows a significant increase in overall productivity.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3