Affiliation:
1. School of Art and Design, Wuhan Institute of Technology, Wuhan 430205, China
Abstract
Designs for remanufacturing (DfRem) consider the remanufacturability of the product in the early stages of product design, which can greatly increase the reusability of the products. However, product design schemes lack reasonable evaluation indicators for remanufacturability, and the decision-makers of the design scheme have subjective preferences and vague hesitation. These result in inaccurate decision making on DfRem schemes that will affect the successful implementation of product remanufacturing. In order to improve the accuracy of the DfRem scheme decision, a fuzzy decision-making method for green design for remanufacturability is proposed. Firstly, an evaluation indicator system for green design schemes was established that takes into account remanufacturability, reliability, cost, and the environment, and the entropy weighting method is used to quantify and weigh the design scheme evaluation indicators. Then, the hesitation fuzzy set is applied to construct the set of evaluations and the optimal design scheme is selected by applying the comprehensive evaluation method. Finally, the feasibility of the above method is verified by using the green design of an injection mold as an example, and the results show that the above method is able to make accurate and effective design scheme decisions. This method has been implemented in a prototype system using Visual Studio 2022 and Microsoft SQL Server 2022. The results show that the fuzzy decision-making system is accurate and effective for rapidly generating a rational green design scheme for remanufacturability.
Funder
Wuhan Institute of Technology Research Foundation Project
Sustainable Design and Product Ecological Innovation Team Project