Structural and Mechanical Properties of Al-SiC-ZrO2 Nanocomposites Fabricated by Microwave Sintering Technique

Author:

Khan Adnan,Abdelrazeq Motasem W.,Mattli Manohar ReddyORCID,Yusuf Moinuddin M.,Alashraf Abdullah,Matli Penchal Reddy,Shakoor R. A.ORCID

Abstract

In the present study, Al-SiC-ZrO2 nanocomposites were developed and characterized. Towards this direction, the aluminum (Al) matrix was reinforced with nano-sized silicon carbide (SiC) and zirconium dioxide (ZrO2), and the mixture was blended using ball milling technique. The blended powder was compacted and sintered in a microwave sintering furnace at 550 °C with a heating rate of 10 °C/min and a dwell time of 30 min. The amount of SiC reinforcement was fixed to 5 wt.%, while the concentration of ZrO2 was varied from 3 to 9 wt.% to elucidate its effect on the microstructural and mechanical properties of the developed nanocomposites. Microstructural analysis revealed the presence and uniform distribution of reinforcements into the Al matrix without any significant agglomeration. The mechanical properties of Al-SiC-ZrO2 nanocomposites (microhardness and compressive strength) were observed to increase with the increase in the concentration of ZrO2 nanoparticles into the matrix. Al-SiC-ZrO2 nanocomposites containing 9 wt.% of ZrO2 nanoparticles demonstrated superior hardness (67 ± 4 Hv), yield strength (103 ± 5 MPa), and compressive strength (355 ± 5 MPa) when compared to pure Al and other compositions of the synthesized composites. Al-SiC-ZrO2 nanocomposites exhibited the shear mode of fracture under compression loadings, and the degree of deformation was restricted due to the work hardening effect. The appealing properties of Al-SiC-ZrO2 nanocomposites make them attractive for industrial applications.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Reference50 articles.

1. Mechanical Metallurgy. McGRAW-HILL BOOK COMPANY, US http://stu.westga.edu/~bthibau1/MEDT%207477-Cooper/Calibre%20Library/Dieter_%20George%20Ellwood/Mechanical%20metallurgy%20(13)/Mechanical%20metallurgy%20-%20Dieter_%20George%20Ellwood.pdf

2. Light-weight nanocomposite materials with enhanced thermal transport properties

3. Microstructure and Mechanical Behavior of Hot Extruded Aluminum/Tin-Bismuth Composites Produced by Powder Metallurgy

4. Effect of Inconel625 particles on the microstructural, mechanical, and thermal properties of Al-Inconel625 composites;Reddy;Mater. Today Commun.,2020

5. Microwave sintering of ceramic reinforced metal matrix composites and their properties: a review

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3