Author:
Dong Kaiwei,Xie Feng,Wang Wei,Chang Yongfeng,Chen Chunlin,Gu Xiaowei
Abstract
Pyrite-rich cyanide tailings (CTs) are industrial hazardous solid wastes arising from the gold mining industry. Every year, hundreds of millions of tons of cyanide tailings are produced and discharged to tailings dams. It is of great significance to dispose of cyanide tailings harmlessly and resourcefully. The feasibility of calcination of calcium sulphoaluminate (CSA) cement clinker using pyrite-rich cyanide tailings as Fe2O3 and SO3 sources was investigated for this paper. The behavior of pyrite during the calcination of cyanide tailings under various calcination conditions and the properties of calcium sulphoaluminate cement clinker were examined. The results show that it is feasible to produce calcium sulphoaluminate cement clinker using pyrite-rich cyanide tailings. The optimal conditions for the calcination of calcium sulphoaluminate cement using pyrite-rich cyanide tailings are confirmed. During the calcination process, the cyanides decompose into carbonate, CO2, and N2. The pyrite decomposes into Fe2O3 and SO2, and they react with CaO and Al2O3 to form the intermediates of CaSO4, 2CaO·Fe2O3, and CaO·2Al2O3, which further react to form 3CaO·3Al2O3·CaSO4, 4CaO·Al2O3·Fe2O3, and 12CaO·7Al2O3. The calcium sulphoaluminate cement prepared by pyrite-rich cyanide tailings exhibits excellent mechanical properties and meets the compressive strength criteria of 42.5 grade calcium sulphoaluminate cement.
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献