Calcination of Calcium Sulphoaluminate Cement Using Pyrite-Rich Cyanide Tailings

Author:

Dong Kaiwei,Xie Feng,Wang Wei,Chang Yongfeng,Chen Chunlin,Gu Xiaowei

Abstract

Pyrite-rich cyanide tailings (CTs) are industrial hazardous solid wastes arising from the gold mining industry. Every year, hundreds of millions of tons of cyanide tailings are produced and discharged to tailings dams. It is of great significance to dispose of cyanide tailings harmlessly and resourcefully. The feasibility of calcination of calcium sulphoaluminate (CSA) cement clinker using pyrite-rich cyanide tailings as Fe2O3 and SO3 sources was investigated for this paper. The behavior of pyrite during the calcination of cyanide tailings under various calcination conditions and the properties of calcium sulphoaluminate cement clinker were examined. The results show that it is feasible to produce calcium sulphoaluminate cement clinker using pyrite-rich cyanide tailings. The optimal conditions for the calcination of calcium sulphoaluminate cement using pyrite-rich cyanide tailings are confirmed. During the calcination process, the cyanides decompose into carbonate, CO2, and N2. The pyrite decomposes into Fe2O3 and SO2, and they react with CaO and Al2O3 to form the intermediates of CaSO4, 2CaO·Fe2O3, and CaO·2Al2O3, which further react to form 3CaO·3Al2O3·CaSO4, 4CaO·Al2O3·Fe2O3, and 12CaO·7Al2O3. The calcium sulphoaluminate cement prepared by pyrite-rich cyanide tailings exhibits excellent mechanical properties and meets the compressive strength criteria of 42.5 grade calcium sulphoaluminate cement.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3