Abstract
An attempt to reveal the mechanisms of scale inhibition with the use of two different fluorescent-tagged antiscalants at once is undertaken. To reach the goal, a novel 1,8-naphthalimide-tagged polyacrylate (PAA-F2) is synthesized and tested separately and jointly with 1,8-naphthalimide-tagged bisphosphonate (HEDP-F) as a gypsum scale inhibitor within the frames of NACE Standard TM0374-2007. Here, it is found that at a dosage of 10 mg·dm−3 it provides a much higher inhibition efficiency (96%) than HEDP-F (32%). A PAA-F2 and HEDP-F blend (1:1 mass) has an intermediate efficacy (66%) and exhibits no synergism relative to its individual components. The visualization of PAA-F2 revealed a paradoxical effect: an antiscalant causes modification of the CaSO4·2H2O crystals habit, but does not interact with them, forming particles of its own solid complex [Ca-PAA-F2]. This paradox is interpreted in terms of the “nano/microdust” concept, prioritizing the bulk heterogeneous nucleation step, while an ability of the scale inhibitor to block the nucleus growth at the next steps is proven to be of secondary importance. At the same time, HEDP-F does not change the gypsum crystals morphology, although this antiscalant is completely located on the surface of the scale phase. The PAA-F2 and HEDP-F blend revealed an accumulation of both antiscalants in their own [Ca-PAA-F2/Ca-HEDP-F] phase with some traces of HEDP-F and PAA-F2 on the CaSO4·2H2O crystals surface. Thus, the visualization of two different antiscalants separately and jointly applied to gypsum deposition demonstrates differences in phosphonic and polymeric inhibitors location, and a lack of causal relationship between antiscalant efficiency and scale particle habit modification. Finally, it is shown that the confocal microscopy of several fluorescent antiscalant blends is capable of providing unique information on their interrelationships during scale deposition.
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献