Quasi Natural Approach for Crystallization of Zeolites from Different Fly Ashes and Their Application as Adsorbent Media for Malachite Green Removal from Polluted Waters

Author:

Zgureva DenitzaORCID,Stoyanova Valeria,Shoumkova Annie,Boycheva SilviyaORCID,Avdeev Georgi

Abstract

Worldwide disposal of multi-tonnage solid waste from coal-burning thermal power plants (TPPs) creates serious environmental and economic problems, which necessitate the recovery of industrial waste in large quantities and at commercial prices. Fly ashes (FAs) and slag from seven Bulgarian TPPs have been successfully converted into valuable zeolite-like composites with various applications, including as adsorbents for capturing CO2 from gases and for removal of contaminants from water. The starting materials generated from different types of coal are characterized by a wide range of SiO2/Al2O3 ratio, heterogeneous structure and a complex chemical composition. The applied synthesis procedure resembles the formation of natural zeolites, as the raw FAs undergo long-term self-crystallization in an alkaline aqueous solution at ambient temperature. The phase and chemical composition, morphology and N2 adsorption of the final zeolite products were studied by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), X-Ray Diffraction (XRD) and Brunauer–Emmett–Teller (BET) analyses. The growth of faujasite (FAU) crystals as the main zeolite phase was established in all samples after 7 and 14 months of alkaline treatment. Phillipsite (PHI) crystals were also observed in several samples as an accompanying phase. The final products possess specific surface area over 400 m2/g. The relationships between the surface properties of the investigated samples and the characteristics of the raw FAs were discussed. All of the obtained zeolite-like composites were able to remove the highly toxic dye (malachite green, MG) from water solutions with efficiency over 96%. The experimental data were fitted with high correlation to the second-order kinetics.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3