Latent Tracks in Ion-Irradiated LiTaO3 Crystals: Damage Morphology Characterization and Thermal Spike Analysis

Author:

Han Xinqing,Liu Yong,Crespillo Miguel L.ORCID,Zarkadoula Eva,Huang QingORCID,Wang XuelinORCID,Liu PengORCID

Abstract

Systematic research on the response of crystal materials to the deposition of irradiation energy to electrons and atomic nuclei has attracted considerable attention since it is fundamental to understanding the behavior of various materials in natural and manmade radiation environments. This work examines and compares track formation in LiTaO3 induced by separate and combined effects of electronic excitation and nuclear collision. Under 0.71–6.17 MeV/u ion irradiation with electronic energy loss ranging from 6.0 to 13.8 keV/nm, the track damage morphologies evolve from discontinuous to continuous cylindrical zone. Based on the irradiation energy deposited via electronic energy loss, the subsequently induced energy exchange and temperature evolution processes in electron and lattice subsystems are calculated through the inelastic thermal spike model, demonstrating the formation of track damage and relevant thresholds of lattice energy and temperature. Combined with a disorder accumulation model, the damage accumulation in LiTaO3 produced by nuclear energy loss is also experimentally determined. The damage characterizations and inelastic thermal spike calculations further demonstrate that compared to damage-free LiTaO3, nuclear-collision-damaged LiTaO3 presents a more intense thermal spike response to electronic energy loss owing to the decrease in thermal conductivity and increase in electron–phonon coupling, which further enhance track damage.

Funder

National Natural Science Foundation of China

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3