Service Life Modeling of Concrete with SCMs Using Effective Diffusion Coefficient and a New Binding Model

Author:

Oluwaseun Azeez Mukhtar OluwaseunORCID,Abd El Fattah AhmedORCID

Abstract

This paper presents a new algorithm that predicts the service life of concrete contains supplementary cementitious materials, SCMs, and determines time of corrosion initiation. The algorithm drives effective diffusivity from an apparent diffusion model, using experimental binding data performed in the lab, temperature, free ion concentration, and carbonation, and generates free chloride profiles for concrete with and without SCMs by using Fick’s law in a finite element model. Adjusting diffusion coefficient at each step of the solution, by addressing the impact of different parameters, simplifies the algorithm and reduces calculation time without jeopardizing the results’ quality. Results generated by the model compare well to the performance of concrete blocks constructed in an exposure site on the east coast of Saudi Arabia. The exposure site hosted five different mixes of Portland cement and SCMs, and the concrete blocks were exposed to harsh weather over the period of two years. Linear polarization and chloride profiling assessed the performance of the mixes against corrosion activities. Lab work identified the performance of the mixes through binding capacity and chloride profiling. Statistical analysis evidenced the accuracy of the model through correlation and regression analysis. Furthermore, a new proposed binding model, produced from binding data in different studies, alters the experimental binding data in the algorithm to decouple the solution from experimental values. The algorithm proves its accuracy when compared to the experimental free chloride profile. The proposed transport model proves that using effective diffusion and binding capacity are enough to generate reliable results, and the effective diffusion can be calibrated with environmental conditions such as temperature, age, and carbonation. Finally, the algorithm presents its features in an object-oriented programming using C# and user friendly web interface.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3