Thermal Stability of YSZ Thick Thermal Barrier Coatings Deposited by Suspension and Atmospheric Plasma Spraying

Author:

Tao Shiqian,Yang Jiasheng,Zhai Minglong,Shao Fang,Zhong Xinghua,Zhao Huayu,Zhuang Yin,Ni Jinxing,Li Wei,Tao Shunyan

Abstract

Two types of segmentation-crack structured yttria-stabilized zirconia (YSZ) thick thermal barrier coatings (>500 μm, TTBCs) were deposited onto the stainless steel substrates using atmospheric plasma spraying (APS) and suspension plasma spraying (SPS) process, respectively. In this work, thermal aging behaviors, such as the microstructures, phase compositions, grain growth, and mechanical properties of APS TTBCs and SPS TTBCs, were systematically investigated. Results showed that both as-sprayed TTBCs exhibited a typical segmentation-crack structure in the through-thickness direction. APS coatings mainly comprised of larger columnar crystals, while a large number of smaller equiaxed grains existed in SPS coatings. Both of the coatings underwent tetragonal-monoclinic phase transformation after 155 °C/40 h heat treatment. The poorer phase stability of SPS TTBCs may have a connection with smaller grain size. Thermal-aged APS and SPS coatings exhibited a significant increase in H and E values with the rising of thermal aging temperature, and for the samples that thermal aged at 1550 °C, the H and E values increased sharply during initial stage then decreased after 80 h due to the phase decomposition. The segmented APS coatings had weak bonding between the lamellaes during thermal exposure, which caused the mean Vickers hardness value of APS TTBCs to be much lower than that of SPS TTBCs.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3