Capillary Water Absorption and Micro Pore Connectivity of Concrete with Fractal Analysis

Author:

Ding Xiangqun,Liang Xinyu,Zhang Yichao,Fang Yanfeng,Zhou Jinghai,Kang Tianbei

Abstract

This study focuses on the relationship between the complexity of pore structure and capillary water absorption of concrete, as well as the connection behavior of concrete in specific directions. In this paper, the water absorption of concrete with different binders was tested during the curing process, and the pore structure of concrete was investigated by mercury intrusion porosimetry (MIP). The results show that the water absorption of concrete with mineral admixtures is lower, mainly due to the existence of reasonable pore structure. The effect of slag on concrete modification is more remarkable comparing with fly ash. In addition, the analysis shows that the pore with different diameters has different fractal characteristics. The connectivity probability and water absorption of unidirectional chaotic pore are linearly correlated with the pore diameter of 50–550 nm, and the correlation coefficient reaches a very significant level, and detailed analysis was undertaken to interpret these results based on fractal theory.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3