Comparative Study on Thermodynamic and Geochemical Characteristics between Cemented and Clotted Parts of Thrombolite

Author:

Zhuang Dingxiang,Guo Yan,Chen Song

Abstract

Carbonate rocks are widely distributed in nature and are one of the main reservoir rocks for oil and gas. Microbes play an important role in the formation of carbonate rocks. Compared with the cemented part with fewer microorganisms (abiotic minerals), the nucleation and growth of the clotted part with more microorganisms (biotic minerals) are affected by the metabolic activities of microorganisms, so it has a unique morphology and crystal structure. However, there are still some confusing questions such as ones regarding the unique thermal decomposition characteristics and geochemical characteristics, which have rarely been studied. Here, X-ray diffraction (XRD) was used to determine the mineral composition of the cemented and clotted part in the same thrombolite. Then, thermal analysis and stable isotope geochemistry were used to explore the thermal stability and stable carbon isotope. The results of X-ray diffraction (XRD) show that the mineral components of the cemented and clotted part in the thrombolite are calcites, but their crystallinity is different. The crystallinity of the clotted part in the thrombolite is higher than that of the cemented part. Thermal analysis results show that the activation energy and the thermal stability of the clotted part in the thrombolite are relatively higher. In addition, the stable carbon isotope results show that, compared with the chemical precipitated calcite in the cemented part, the microorganisms in the clotted part absorb more 12C through photosynthesis, which results in more 13C in the clotted part, and the carbon isotope δ13C value is higher. This study helps to distinguish the crystallographic, thermodynamic and geochemical characteristics of cemented and clotted parts in thrombolite, and may be helpful to deepen our understanding of abiotic and biotic minerals.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3