Effect of Annealing on Anisotropic Tensile Properties of Al–12%Si Alloy Fabricated by Laser Powder Bed Fusion

Author:

Liu Mulin,Wada Takafumi,Suzuki Asuka,Takata NaokiORCID,Kobashi Makoto,Kato MasakiORCID

Abstract

In this study, we systematically investigated microstructures and tensile properties of an Al–12mass%Si alloy additive-manufactured by laser powder bed fusion (LPBF) process and subsequently annealed at various temperatures. Microstructure of the as-fabricated sample was characterized by a number of melt pools consisting of α-Al phases surrounded by Si eutectic phases. Fine Si precipitates were observed in the α-Al phase in the sample annealed at 200 °C. The eutectic Si phase appears to agglutinate, resulting in a coarsened Si phase formed at high temperatures above 300 °C. The initial cellular microstructure completely disappears and a number of coarsened Si phases and plate-shaped intermetallic phases (β-AlFeSi) were formed in the sample annealed at 530 °C. However, the grain morphology of the α-Al matrix slightly changed after the annealing at high temperatures. The as-fabricated specimen showed a high strength above 400 MPa and a low ductility of below 10% in total elongation. The tensile ductility varied depending on the tensile direction. The annealed specimens exhibited a lower tensile strength and larger elongation, whereas the direction dependence of the tensile properties was less pronounced in the specimens annealed at higher temperatures. The anisotropic tensile ductility can be rationalized by preferential fractures occurred around melt pool boundaries.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Reference43 articles.

1. Additive Manufacturing Technologies;Gibson,2014

2. The metallurgy and processing science of metal additive manufacturing

3. Scientific, technological and economic issues in metal printing and their solutions

4. Apparatus for Production of Three-Dimensional Objects by Stereolithography https://patents.google.com/patent/US4575330A/en

5. Patent and Litigation Trends for 3D Printing Technologies https://www.iam-media.com/patent-and-litigation-trends-3d-printing-technologies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3