Shear Deformation Helps Phase Transition in Pure Iron Thin Films with “Inactive” Surfaces: A Molecular Dynamics Study

Author:

Ruan Ting,Wang Binjun,Xu Chun,Jiang Yunqiang

Abstract

In a previous study, it was shown that the (111)fcc, (110)fcc and (111)bcc free surfaces do not assist the phase transitions as nucleation sites upon heating/cooling in iron (Fe) thin slabs. In the present work, the three surfaces are denoted as “inactive” free surfaces. The phase transitions in Fe thin films with these “inactive” free surfaces have been studied using a classical molecular dynamics simulation and the Meyer–Entel potential. Our results show that shear deformation helps to activate the free surface as nucleation sites. The transition mechanisms are different in dependence on the surface orientation. In film with the (111)fcc free surface, two body-centered cubic (bcc) phases with different crystalline orientations nucleate at the free surface. In film with the (110)fcc surface, the nucleation sites are the intersections between the surfaces and stacking faults. In film with the (111)bcc surface, both heterogeneous nucleation at the free surface and homogeneous nucleation in the bulk material are observed. In addition, the transition pathways are analyzed. In all cases studied, the unstrained system is stable and no phase transition takes place. This work may be helpful to understand the mechanism of phase transition in nanoscale systems under external deformation.

Funder

Shanghai Pujiang Program

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3