Abstract
The liquid-phase exfoliation (LPE) method has been gaining increasing interest by academic and industrial researchers due to its simplicity, low cost, and scalability. High-intensity ultrasound energy was exploited to transform graphite to graphene in the solvents of dimethyl sulfoxide (DMSO), N,N-dimethyl formamide (DMF), and perchloric acid (PA) without adding any surfactants or ionic liquids. The crystal structure, number of layers, particle size, and morphology of the synthesized graphene samples were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), ultraviolet visible (UV–vis) spectroscopy, dynamic light scattering (DLS), and transmission electron microscopy (TEM). XRD and AFM analyses indicated that G-DMSO and G-DMF have few layers while G-PA has multilayers. The layer numbers of G-DMSO, G-DMF, and G-PA were determined as 9, 10, and 21, respectively. By DLS analysis, the particle sizes, polydispersity index (PDI), and zeta potential of graphene samples were estimated in a few micrometers. TEM analyses showed that G-DMSO and G-DMF possess sheet-like fewer layers and also, G-PA has wrinkled and unordered multilayers.
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献