Experimental Charge Density Analysis and Electrostatic Properties of Crystalline 1,3-Bis(Dimethylamino)Squaraine and Its Dihydrate from Low Temperature (T = 18 and 20 K) XRD Data

Author:

Destro Riccardo,Roversi PietroORCID,Soave RaffaellaORCID,Hovestad Arjan,Lo Presti LeonardoORCID

Abstract

Multipolar refinements of structural models fitting extensive sets of X-ray diffraction (XRD) data from single crystals of 1,3-bis(dimethylamino)squaraine [SQ, C8H12N2O2] and its dihydrate [SQDH, C8H12N2O2·2H2O], collected at very low T (18 ± 1 K for SQ, 20 ± 1 K for SQDH), led to an accurate description of their crystal electron density distributions. Atomic volumes and charges have been estimated from the experimental charge densities using the Quantum Theory of Atoms in Molecules (QTAIM) formalism. Our analysis confirms the common representation (in the literature and textbooks) of the squaraine central, four-membered squarylium ring as carrying two positive charges, a representation that has been recently questioned by some theoretical calculations: the integrated total charge on the C4 fragment is estimated as ca. +2.4e in SQ and +2.2e in SQDH. The topology of the experimental electron density for the SQ squaraine molecule is modified in the dihydrated crystal by interactions between the methyl groups and the H2O molecules in the crystal. Maps of the molecular electrostatic potential in the main molecular planes in both crystals clearly reveal the quadrupolar charge distribution of the squaraine molecules. Molecular quadrupole tensors, as calculated with the PAMoC package using both Stewart and QTAIM distributed multipole analysis (DMA), are the same within experimental error.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3