Effect of Cavity Structure on Acoustic Characteristics of Phononic Crystals Based on Double-Layer Plates

Author:

Chen ChuanminORCID,Guo Zhaofeng,Liu Songtao,Feng Hongda,Qiao Chuanxi

Abstract

Localized resonance phononic crystals (LRPCs) are increasingly attracting scientists’ attention in the field of low-frequency noise reduction because of the excellent subwavelength band gap characteristics in the low-frequency band. However, the LRPCs have always had the disadvantage that the noise reduction band is too narrow. In this paper, in order to solve this problem, LRPCs based on double-layer plates with cavity structures are designed. First, the energy bands of phononic crystals plate with different thicknesses were calculated by the finite element method (FEM). At the same time, the mechanism of band gap generation was analyzed in combination with the modalities. Additionally, the influence of structure on the sound transmission loss (STL) of the phononic crystals plate and the phononic crystals cavity plates were analyzed, which indicates that the phononic crystals cavity plates have notable characteristics and advantages. Moreover, this study reveals a unique ”cavity cave” pattern in the STL diagram for the phononic crystals cavity plates, and it was analyzed. Finally, the influence of structural factors on the band structure and STL of phononic crystals cavity plates are summarized, and the theoretical basis and method guidance for the study of phononic crystals cavity plates are provided. New ideas are also provided for the future design and research of phononic crystals plate along with potential applications in low-frequency noise reduction.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3