UVB LEDs Grown by Molecular Beam Epitaxy Using AlGaN Quantum Dots

Author:

Brault Julien,Khalfioui Mohamed Al,Matta Samuel,Ngo Thi Huong,Chenot Sébastien,Leroux Mathieu,Valvin Pierre,Gil Bernard

Abstract

AlGaN based light emitting diodes (LEDs) will play a key role for the development of applications in the ultra-violet (UV). In the UVB region (280–320 nm), phototherapy and plant lighting are among the targeted uses. However, UVB LED performances still need to be improved to reach commercial markets. In particular, the design and the fabrication process of the active region are central elements that affect the LED internal quantum efficiency (IQE). We propose the use of nanometer-sized epitaxial islands (i.e., so called quantum dots (QDs)) to enhance the carrier localization and improve the IQE of molecular beam epitaxy (MBE) grown UVB LEDs using sapphire substrates with thin sub-µm AlN templates. Taking advantage of the epitaxial stress, AlGaN QDs with nanometer-sized (≤10 nm) lateral and vertical dimensions have been grown by MBE. The IQE of the QDs has been deduced from temperature dependent and time resolved photoluminescence measurements. Room temperature IQE values around 5 to 10% have been found in the 290–320 nm range. QD-based UVB LEDs were then fabricated and characterized by electrical and electroluminescence measurements. On-wafer measurements showed optical powers up to 0.25 mW with external quantum efficiency (EQE) values around 0.1% in the 305–320 nm range.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Reference47 articles.

1. High-power UV InGaN/AlGaN double-heterostructure LEDs

2. An aluminium nitride light-emitting diode with a wavelength of 210 nanometres

3. Minamata Convention on Mercuryhttp://www.mercuryconvention.org/

4. A Brief Review of III-Nitride UV Emitter Technologies and Their Applications;Kneissl,2016

5. Wavelength dependence of biological damage induced by UV radiation on bacteria

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3