Arsenic Fixation in Polluted Soils by Peat Applications

Author:

Aguilar-Garrido AntonioORCID,Romero-Freire AnaORCID,García-Carmona Minerva,Martín Peinado Francisco J.ORCID,Sierra Aragón ManuelORCID,Martínez Garzón Francisco J.ORCID

Abstract

Soil arsenic (As) pollution is still a major concern due to its high toxicity and carcinogenicity, thus, the study of decontamination techniques, as the organic amendment applications, keeps upgrading. This research evaluates the potential remediation of peat in different As-polluted soils, by assessing the decrease of As solubility and its toxicity through bioassays. Obtained reduction in As solubility by peat addition was strongly related to the increase of humic substances, providing colloids that allow the complexation of As compounds. Calcareous soils have been the least effective at buffering As pollution, with higher As concentrations and worse biological response (lower soil respiration and inhibition of lettuce germination). Non-calcareous soils showed lower As concentrations due to the higher iron content, which promotes As fixation. Although in both cases, peat addition improves the biological response, it also showed negative effects, hypothetically due to peat containing toxic polyphenolic compounds, which in the presence of carbonates appears to be concealed. Both peat dose tested (2% and 5%) decreased drastically As mobility; however, for calcareous soils, as there is no phytotoxic effect, the 5% dose is the most recommended; while for non-calcareous soils the efficient peat dose for As decontamination could be lower.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference75 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3