Phase Relations in the FeO-Fe3C-Fe3N System at 7.8 GPa and 1350 °C: Implications for Oxidation of Native Iron at 250 km

Author:

Kruk Aleksei N.,Sokol Alexander G.,Seryotkin Yurii V.,Palyanov Yuri N.

Abstract

Oxidation of native iron in the mantle at a depth about 250 km and its influence on the stability of main carbon and nitrogen hosts have been reconstructed from the isothermal section of the ternary phase diagram for the FeO-Fe3C-Fe3N system. The results of experiments at 7.8 GPa and 1350 °C show that oxygen increase in the system to > 0.5 wt % provides the stability of FeO and leads to changes in the phase diagram: the Fe3C, L, and Fe3N single-phase fields change to two-phase ones, while the Fe3C + L and Fe3N + L two-phase fields become three-phase. Сarbon in iron carbide (Fe3C, space group Pnma) is slightly below the ideal value and nitrogen is below the EMPA (Electron microprobe analysis) detection limit. Iron nitride (ε-Fe3N, space group P63/mmc) contains up to 2.7 wt % С and 4.4 wt % N in equilibrium with both melt and wüstite but 2.1 wt % С and 5.4 wt % N when equilibrated with wüstite alone. Impurities in wüstite (space group Fmm) are within the EMPA detection limit. The contents of oxygen, carbon, and nitrogen in the metal melt equilibrated with different iron compounds are within 0.5–0.8 wt % O even in FeO-rich samples; 3.8 wt % C and 1.2 wt % N for Fe3C + FeO; and 2.9 wt % C and 3.5 wt % N for Fe3N + FeO. Co-crystallization of Fe3C and Fe3N from the O-bearing metal melt is impossible because the fields of associated C- and N-rich compounds are separated by that of FeO + L. Additional experiments with excess oxygen added to the system show that metal melt, which is the main host of carbon and nitrogen in the metal-saturated (~0.1 wt %) mantle at a depth of ~250 km and a normal heat flux of 40 mW/m2, has the greatest oxygen affinity. Its partial oxidation produces FeO and causes crystallization of iron carbides (Fe3C and Fe7C3) and increases the nitrogen enrichment of the residual melt. Thus, the oxidation of metal melt in the mantle enriched in volatiles may lead to successive crystallization of iron carbides and nitrides. In these conditions, magnetite remains unstable till complete oxidation of iron carbide, iron nitride, and the melt. Iron carbides and nitrides discovered as inclusions in mantle diamonds may result from partial oxidation of metal melt which originally contained relatively low concentrations of carbon and nitrogen.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3