Dynamic Monitoring of Grinding Circuits by Use of Global Recurrence Plots and Convolutional Neural Networks

Author:

Olivier JacquesORCID,Aldrich ChrisORCID

Abstract

Reliable control of grinding circuits is critical to more efficient operation of concentrator plants. In many cases, operators still play a key role in the supervisory control of grinding circuits but are not always able to act timely to deal with disturbances, such as changes in the mill feed. Reliable process monitoring can play a major role in assisting operators to take more timely and reliable action. These monitoring systems need to be able to deal with what could be complex nonlinear dynamic behavior of comminution circuits. To this end, a dynamic process monitoring approach is proposed based on the use of convolutional neural networks. To take advantage of the availability of pretrained neural networks, the grinding circuit variables are treated as time series which can be converted into images. Features extracted from these networks are subsequently analyzed in a multivariate process monitoring framework with an underlying principal component model. Two variants of the approach based on convolutional neural networks are compared with dynamic principal component analysis on a simulated and real-world case studies. In the first variant, the pretrained neural network is used as a feature extractor without any further training. In the second variant, features are extracted following further training of the network in a synthetic binary classification problem designed to enhance the extracted features. The second approach yielded nominally better results than what could be obtained with dynamic principal component analysis and the approach using features extracted by transfer learning.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3