Realizing Mathematics of Arrays Operations as Custom Architecture Hardware-Software Co-Design Solutions

Author:

Grout Ian AndrewORCID,Mullin LenoreORCID

Abstract

In embedded electronic system applications being developed today, complex datasets are required to be obtained, processed, and communicated. These can be from various sources such as environmental sensors, still image cameras, and video cameras. Once obtained and stored in electronic memory, the data is accessed and processed using suitable mathematical algorithms. How the data are stored, accessed, processed, and communicated will impact on the cost to process the data. Such algorithms are traditionally implemented in software programs that run on a suitable processor. However, different approaches can be considered to create the digital system architecture that would consist of the memory, processing, and communications operations. When considering the mathematics at the centre of the design making processes, this leads to system architectures that can be optimized for the required algorithm or algorithms to realize. Mathematics of Arrays (MoA) is a class of operations that supports n-dimensional array computations using array shapes and indexing of values held within the array. In this article, the concept of MoA is considered for realization in software and hardware using Field Programmable Gate Array (FPGA) and Application Specific Integrated Circuit (ASIC) technologies. The realization of MoA algorithms will be developed along with the design choices that would be required to map a MoA algorithm to hardware, software or hardware-software co-designs.

Publisher

MDPI AG

Subject

Information Systems

Reference40 articles.

1. Google (2022, September 01). TensorFlow. Available online: https://www.tensorflow.org.

2. FPGA-Based Accelerators of Deep Learning Networks for Learning and Classification: A Review;IEEE Access,2018

3. Intel Corporation (2022, September 01). Intel(C) Core(TM) Processor Family. Available online: https://www.intel.co.uk/content/www/uk/en/products/details/processors/core.html.

4. NVIDIA Corporation (2022, September 01). NVIDIA Technologies. Available online: https://www.nvidia.com/en-us/technologies/.

5. Google (2022, September 01). Cloud TPU. Available online: https://cloud.google.com/tpu/.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3