Modeling the Physiological Parameters of Brewer’s Yeast during Storage with Natural Zeolite-Containing Tuffs Using Artificial Neural Networks

Author:

Shafrai Anton V.ORCID,Permyakova Larisa V.ORCID,Borodulin Dmitriy M.ORCID,Sergeeva Irina Y.ORCID

Abstract

Various methods are used to prevent the deterioration of the biotechnological properties of brewer’s yeast during storage. This paper studied the use of artificial neural networks for the mathematical modeling of correcting the biosynthetic activity of brewer’s seed yeast of the C34 race during storage with natural minerals. The input parameters for the artificial neural networks were the suspending medium (water, beer wort, or young beer); the type of the zeolite-containing tuff from Siberian deposits; the tuff content (0.5–4% of the total volume of the suspension); and the duration of storage (3 days). The output parameters were the number of yeast cells with glycogen, budding cells, and dead cells. In the yeast stored with tuffs, the number of budding cells increased by 1.2–2.5 times, and the number of cells with glycogen increased by 9–190% compared to the control sample (without tuff). The presence of kholinskiy zeolite and shivyrtuin tuffs resulted in a significant effect. The artificial neural networks were required for solving the regression tasks and predicting the output parameters based on the input parameters. Four networks were created: ANN1 (mean relative error = 4.869%) modeled the values of all the output parameters; ANN2 (MRE = 1.8381%) modeled the number of cells with glycogen; ANN3 (MRE = 6.2905%) modeled the number of budding cells; and ANN4 (MRE = 4.2191%) modeled the number of dead cells. The optimal parameters for yeast storage were then determined. As a result, the possibility of using ANNs for mathematical modeling of undesired deviations in the physiological parameters of brewer’s seed yeast during storage with natural minerals was proven.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Information Systems

Reference36 articles.

1. Boulton, C., and Quain, D. (2001). Brewing Yeast and Fermentation, Blackwell Science.

2. Narziβ, L. (2005). Abriss der Bierbrauerei. Weinheim, Wiley-VCH Verlag GmbH & Co. KGaA.

3. Back, W. (2008). Ausgewählte Kapitel der Brauereitechnologie, Fachverlag Hans Karl.

4. Annemuller, G., Manger, H.-J., and Lietz, P. (2011). The Yeast in the Brewery, VLB Berlin.

5. Classification of preparations to promote yeast vital activity;Food Process. Tech. Technol.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3