Improving Map Matching of Floating Car Data with Artificial Intelligence Techniques

Author:

Ayfantopoulou Georgia,Militsis Marios Nikolaos,Grau Josep Maria SalanovaORCID,Basbas SocratesORCID

Abstract

Map matching is a crucial data processing task for transferring measurements from the dynamic sensor location to the relevant road segment. It is especially important when estimating road network speed by using probe vehicles (floating car data) as speed measurement sensors. Most common approaches rely on finding the closet road segment, but road network geometry (e.g., dense areas, two-way streets, and superposition of road segments due to different heights) and inaccuracy in the GNSS location (up to decades of meters in urban areas) can wrongly allocate up to 30% of the measurements. More advanced methods rely on taking the topology of the network into account, significantly improving the accuracy at a higher computational cost, especially when the accuracy of the GNSS location is low. In order to both improve the accuracy of the “closet road segment” methods and reduce the processing time of the topology-based methods, the data can be pre-processed using AI techniques to reduce noise created by the inaccuracy of the GNSS location and improve the overall accuracy of the map-matching task. This paper applies AI to correct GNSS locations and improve the map-matching results, achieving a matching accuracy of 76%. The proposed methodology is demonstrated to the floating car data generated by a fleet of 1200 taxi vehicles in Thessaloniki used to estimate road network speed in real time for information services and for supporting traffic management in the city.

Publisher

MDPI AG

Subject

Information Systems

Reference57 articles.

1. T-Drive: Enhancing Driving Directions with Taxi Drivers’ Intelligence;Yuan;IEEE Trans. Knowl. Data Eng.,2013

2. Stenneth, L., Wolfson, O., Yu, P.S., and Xu, B. Transportation mode detection using mobile phones and GIS information. Proceedings of the 19th SIGSPATIAL International Conference on Advances in Geographic Information Systems.

3. Fleet Management for Vehicle Sharing Operations;Nair;Transp. Sci.,2011

4. Travel time estimation from sparse floating car data with consistent path inference: A fixed point approach;Rahmani;Transp. Res. Part C Emerg. Technol.,2017

5. A dynamic two-dimensional (D2D) weight-based map-matching algorithm;Sharath;Transp. Res. Part C Emerg. Technol.,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3