Towards the Monitoring of Underground Caves Using Geomatics and Geophysical Techniques: 3D Analyses and Seismic Response

Author:

Dabove Paolo1ORCID,Colombero Chiara1ORCID,Salerno Quaroni Andrea1ORCID

Affiliation:

1. Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, 10129 Torino, Italy

Abstract

Analyses of climate change, due to its impact not only on the weather and the environment but also on human health and life, are one of the most important study activities made in recent years. There is relatively high confidence that glacial melt and heavy rainfall events will continue to increase. These climate-related events carry a microseismic signature that can guide monitoring activities. In the last decade, there have been growing applications of long-term continuous ambient seismic noise systems to monitor landslides and potentially unstable rock sites. This work reports some of the activities made during a project performed under the Department of Excellence on Climate Change (2018–2022), funded by the Italian Ministry for University and Research (MUR), in order to improve environmental seismic analyses. The selected test site is the Bossea Cave (NW Italy), where two seismic stations were installed. The goals were to use these stations to understand and study climate change events above the Bossea Cave, analyzing the data from a geophysical and geomatics point of view. Starting with UAV flights and photogrammetric processing to obtain a 3D model of the cave, both ambient seismic noise and microseismicity analyses highlighted an important effect of air temperature and precipitation on the seismic response of the monitored rock mass overlying the Bossea Cave. In particular, a clear effect on the ambient seismic noise spectral content and the peak frequency of the microseismic events driven by temperature and precipitation was found during the warmer monitoring months, with almost zero delays in the seismic response. This is a preliminary but important study, even if longer monitoring data and thermal modeling efforts are needed to fully understand this seasonal variation.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3