Unsupervised Cross-Scene Aerial Image Segmentation via Spectral Space Transferring and Pseudo-Label Revising

Author:

Liu Wenjie1234ORCID,Zhang Wenkai12,Sun Xian1234,Guo Zhi12

Affiliation:

1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China

2. Key Laboratory of Network Information System Technology (NIST), Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China

3. University of Chinese Academy of Sciences, Beijing 100190, China

4. School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100190, China

Abstract

Unsupervised domain adaptation (UDA) is essential since manually labeling pixel-level annotations is consuming and expensive. Since the domain discrepancies have not been well solved, existing UDA approaches yield poor performance compared with supervised learning approaches. In this paper, we propose a novel sequential learning network (SLNet) for unsupervised cross-scene aerial image segmentation. The whole system is decoupled into two sequential parts—the image translation model and segmentation adaptation model. Specifically, we introduce the spectral space transferring (SST) approach to narrow the visual discrepancy. The high-frequency components between the source images and the translated images can be transferred in the Fourier spectral space for better preserving the important identity and fine-grained details. To further alleviate the distribution discrepancy, an efficient pseudo-label revising (PLR) approach was developed to guide pseudo-label learning via entropy minimization. Without additional parameters, the entropy map works as the adaptive threshold, constantly revising the pseudo labels for the target domain. Furthermore, numerous experiments for single-category and multi-category UDA segmentation demonstrate that our SLNet is the state-of-the-art.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3