Evaluation of the High-Resolution MuSyQ LAI Product over Heterogeneous Land Surfaces

Author:

Li Dandan12,Huang Yajun12,Xiao Yao12ORCID,He Min3,Wen Jianguang4,Li Yuanqing12ORCID,Ma Mingguo12ORCID

Affiliation:

1. Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, Southwest University, Chongqing 400715, China

2. Chongqing Engineering Research Center for Remote Sensing Big Data Application, School of Geographical Sciences, Southwest University, Chongqing 400715, China

3. State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, China University of Chinese Academy of Sciences, Beijing 100049, China

4. State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China

Abstract

In recent years, the retrieval and validation of remotely-sensed leaf area index (LAI) products over complex land surfaces have received much attention due to the high-precision land surface model simulations and applications in global climate change. However, most of these related researches mainly focus on coarse resolution products. This is because few products have been specifically designed for solving the problems derived from complex land surfaces in mountain areas until now. MuSyQ LAI is a new product derived from Gaofen-1 (GF-1) satellite data. This product is characterized with a temporal resolution of 10 days and a spatial resolution of 16 m. As is well known, high-resolution products have less uncertainties because of the homogeneities of sub-pixel. Therefore, to evaluate the precision and uncertainty of MuSyQ LAI, an up-scaling strategy was employed here to validate MuSyQ LAI for three mountain regions in Southwest China. The validation strategy can be divided into three parts. First, a regression model was built by in situ LAI measured by LAI-2200 and the normalized difference vegetation index (NDVI) from unmanned aerial vehicle (UAV) images to obtain a 0.5 m resolution LAI map. Second, an up-scaled LAI map with a spatial resolution consistent with MuSyQ LAI was calculated by the pixel-averaging method from the UAV-based LAI map. Third, the MuSyQ LAI was validated by the up-scaled UAV-based LAI in pixel scale. Simultaneously, the sources of uncertainty were analyzed and compared from the view of data source, retrieval model, and scale effects. The results suggested that MuSyQ LAI in the study areas are significantly underestimated by 53.69% due to the complex terrain and heterogeneous land cover. There are three main reasons for the underestimation. The differences between GF-1 reflectance and UAV-based reflectance employed to estimate LAI are the largest factors for the validation results, even accounting for 61.47% of the total bias. Subsequently, the scale effects led to about 28.44% bias. Last but not least, the models employed to retrieve LAI contributed merely 10.09% uncertainties to the total bias. In conclusion, the accuracy of MuSyQ LAI still has a large space to be improved from the view of reflectance over complex terrain. This study is quite important for applications of MuSyQ LAI products and also provides a reference for the improvement and application of other high-resolution remotely sensed LAI products.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3