In Search of the Max Coverage Region in Road Networks

Author:

Fang Lanting1,Kou Ze1,Zhou Yuzhang1,Zhang Yudong2ORCID,Yuan George Y.3

Affiliation:

1. School of Cyber Science and Engineering, Southeast University, Nanjing 211189, China

2. School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK

3. Thinvent Digital Technology Co., Ltd., Nanchang 330096, China

Abstract

The widespread use of mobile devices has resulted in the generation of vast amounts of spatial data. The availability of such large-scale spatial data facilitates the development of data-driven approaches to address real-life problems. This paper introduces the max coverage region (MCR) problem in road networks and provides efficient solutions. Given a set of spatial objects and a coverage radius, the MCR problem aims to identify a location from the road network, so that we can reach as many spatial objects as possible within the given coverage radius from the location. This problem is fundamental to supporting many real-world applications. Given a road network and a set of sensors, this problem can be used to find the best location for a sensor maintenance station. This problem can also be applied in medical research, such as in a protein–protein interaction network, where the nodes represent proteins, the edges represent their interactions, and the weight of an edge represents confidence. We can use the MCR problem to find the set of interacting proteins with a confidence budget. We propose an efficient exact solution to solve the problem, where we reduce the MCR problem to an equivalent problem named the most overlapped interval and design an edge-level upper bound estimation method to reduce the search space. Furthermore, we propose two approximate solutions that sacrifice a little accuracy for much better efficiency. Our experimental study on real-road network datasets demonstrates the effectiveness and superiority of the proposed approaches.

Funder

National Natural Science Foundation of China

Southeast University

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3