Adaptive Slicing-Aided Hyper Inference for Small Object Detection in High-Resolution Remote Sensing Images

Author:

Zhang Hao1,Hao Chuanyan1ORCID,Song Wanru1,Jiang Bo1ORCID,Li Baozhu2

Affiliation:

1. School of Education Science and Technology, Nanjing University of Posts and Telecommunications, Nanjing 210023, China

2. Internet of Things & Smart City Innovation Platform, Zhuhai Fudan Innovation Institute, Zhuhai 519031, China

Abstract

In the field of object detection, deep learning models have achieved great success in recent years. Despite these advances, detecting small objects remains difficult. Most objects in aerial images have features that are a challenge for traditional object detection techniques, including small size, high density, high variability, and varying orientation. Previous approaches have used slicing methods on high-resolution images or feature maps to improve performance. However, existing slicing methods inevitably lead to redundant computation. Therefore, in this article we present a novel adaptive slicing method named ASAHI (Adaptive Slicing Aided Hyper Inference), which can dramatically reduce redundant computation using an adaptive slicing size. Specifically, ASAHI focuses on the number of slices rather than the slicing size, that is, it adaptively adjusts the slicing size to control the number of slices according to the image resolution. Additionally, we replace the standard non-maximum suppression technique with Cluster-DIoU-NMS due to its improved accuracy and inference speed in the post-processing stage. In extensive experiments, ASAHI achieves competitive performance on the VisDrone and xView datasets. The results show that the mAP50 is increased by 0.9% and the computation time is reduced by 20–25% compared with state-of-the-art slicing methods on the TPH-YOLOV5 pretrained model. On the VisDrone2019-DET-val dataset, our mAP50 result is 56.4% higher, demonstrating the superiority of our approach.

Funder

National Natural Science Foundation of China

Shandong Provincial Natural Science Foundation

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference42 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3