Assessment of Estimated Phycocyanin and Chlorophyll-a Concentration from PRISMA and OLCI in Brazilian Inland Waters: A Comparison between Semi-Analytical and Machine Learning Algorithms

Author:

Lima Thainara Munhoz Alexandre de12ORCID,Giardino Claudia34ORCID,Bresciani Mariano3ORCID,Barbosa Claudio Clemente Faria12ORCID,Fabbretto Alice35,Pellegrino Andrea3ORCID,Begliomini Felipe Nincao6ORCID

Affiliation:

1. Earth Observation and Geoinformatics Division (DIOTG), National Institute for Space Research (INPE), São José dos Campos 12227-010, SP, Brazil

2. Instrumentation Laboratory for Aquatic Systems (LabISA), Earth Sciences General Coordination of the National Institute for Space Research (INPE), São José dos Campos 12227-010, SP, Brazil

3. CNR-IREA, National Research Council of Italy, Institute for Electromagnetic Sensing of the Environment, 20133 Milan, Italy

4. NBFC, National Biodiversity Future Center, 90133 Palermo, Italy

5. Tartu Observatory, University of Tartu, 50411 Tartu, Estonia

6. Cambridge Centre for Carbon Credits, Department of Computer Science and Technology, University of Cambridge, Cambridge CB2 1TN, UK

Abstract

The aim of this work is to test the state-of-the-art of water constituent retrieval algorithms for phycocyanin (PC) and chlorophyll-a (chl-a) concentrations in Brazilian reservoirs from hyperspectral PRISMA images and concurrent in situ data. One near-coincident Sentinel-3 OLCI dataset has also been considered for PC mapping as its high revisit time is a relevant element for mapping cyanobacterial blooms. The testing was first performed on remote sensing reflectance (Rrs), as derived by applying two atmospheric correction methods (6SV, ACOLITE) to Level 1 data and as provided in the corresponding Level 2 products (PRISMA L2C and OLCI L2-WFR). Since PRISMA images were affected by sun glint, the testing of three de-glint models was also performed. The applicability of Semi-Analytical (SA) and Mixture Density Network (MDN) algorithms in enabling PC and chl-a concentration retrieval was then tested over three PRISMA scenes; in the case of PC concentration estimation, a Random Forest (RF) algorithm was further applied. Regarding OLCI, the SA algorithm was tested for PC estimation; notably, only SA was calibrated with site-specific data from the reservoir. The algorithms were applied to the Rrs spectra provided by PRISMA L2C products—and those derived with ACOLITE, in the case of OLCI—as these data showed better agreement with in situ measurements. The SA model provided low median absolute error (MdAE) for PRISMA-derived (MdAE = 3.06 mg.m−3) and OLCI-derived (MdAE = 3.93 mg.m−3) PC concentrations, while it overestimated PRISMA-derived chl-a (MdAE = 42.11 mg.m−3). The RF model for PC applied to PRISMA performed slightly worse than SA (MdAE = 5.21 mg.m−3). The MDN showed a rather different performance, with higher errors for PC (MdAE = 40.94 mg.m−3) and lower error for chl-a (MdAE = 23.21 mg.m−3). The results overall suggest that the model calibrated with site-specific measurements performed better and indicates that SA could be applied to PRISMA and OLCI for remote sensing of PC in Brazilian reservoirs.

Funder

H2020 PrimeWater

H2020 Water-ForCE

São Paulo Research Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3