Interannual Variation of Landfast Ice Using Ascending and Descending Sentinel-1 Images from 2019 to 2021: A Case Study of Cambridge Bay

Author:

Zhu Yikai12ORCID,Zhou Chunxia12ORCID,Zhu Dongyu12,Wang Tao12ORCID,Zhang Tengfei3

Affiliation:

1. Chinese Antarctic Center of Surveying and Mapping, Wuhan University, Wuhan 430079, China

2. Key Laboratory of Polar Surveying and Mapping, MNR, Wuhan University, Wuhan 430079, China

3. School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha 410114, China

Abstract

Landfast ice has undergone a dramatic decline in recent decades, imposing potential effects on ice travel for coastal populations, habitats for marine biota, and ice use for industries. The mapping of landfast ice deformation and the investigation of corresponding causes of changes are urgent tasks that can provide substantial data to support the maintenance of the stability of the Arctic ecosystem and the development of human activities on ice. This work aims to investigate the time-series deformation characteristics of landfast ice at multi-year scales and the corresponding influence factors. For the landfast ice deformation monitoring technique, we first combined the small baseline subset approach with ascending and descending Sentinel-1 images to obtain the line-of-sight deformations for two flight directions, and then we derived the 2D deformation fields comprising the vertical and horizontal directions for the corresponding periods by introducing a transform model. The vertical deformation results were mostly within the interval [−65, 23] cm, while the horizontal displacement was largely within the range of [−26, 78] cm. Moreover, the magnitude of deformation observed in 2019 was evidently greater than those in 2020 and 2021. In accordance with the available data, we speculate that the westerly wind and eastward-flowing ocean currents are the dominant reasons for the variation in the horizontal direction in Cambridge Bay, while the factors causing spatial differences in the vertical direction are the sea-level tilt and ice growth. For the interannual variation, the leading cause is the difference in sea-level tilt. These results can assist in predicting the future deformation of landfast ice and provide a reference for on-ice activities.

Funder

National Key Research and Development Program of 414 China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3