Possible Future Climate Change Impacts on the Meteorological and Hydrological Drought Characteristics in the Jinghe River Basin, China

Author:

Huang Tingting1,Wu Zhiyong2,Xiao Peiqing1,Sun Zhaomin2,Liu Yu3,Wang Jingshu1,Wang Zhihui1

Affiliation:

1. Laboratory of Soil and Water Conservation on the Loess Plateau of Ministry of Water Resources, Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission, Zhengzhou 450003, China

2. School of Hydrology and Water Resources, Hohai University, Nanjing 210000, China

3. College of Water Resources and Architectural Engineering, Northwest A&F University, Xianyang 712100, China

Abstract

Revealing the impact of future climate change on the characteristics and evolutionary patterns of meteorological and hydrological droughts and exploring the joint distribution characteristics of their drought characteristics are essential for drought early warning in the basin. In this study, we considered the Jinghe River Basin in the Loess Plateau as the research object. The standardized precipitation index (SPI) and standardized runoff index (SRI) series were used to represent meteorological drought and hydrological drought with monthly runoff generated by the SWAT model. In addition, the evolution laws of the JRB in the future based on Copula functions are discussed. The results showed that: (1) the meteorological drought and hydrological drought of the JRB displayed complex periodic change trends of drought and flood succession, and the evolution laws of meteorological drought and hydrological drought under different spatiotemporal scales and different scenario differ significantly. (2) In terms of the spatial range, the JRB meteorological and hydrological drought duration and severity gradually increased along with the increase in the time scale. (3) Based on the joint distribution model of the Copula function, the future meteorological drought situation in the JRB will be alleviated when compared with the historical period on the seasonal scale, but the hydrological drought situation is more serious. The findings can help policy-makers explore the correlation between meteorological drought and hydrological drought in the background of future climate change, as well as the early warning of hydrological drought.

Funder

Natural Funds-Influence and role of allocation of soil and water conservation measures on runoff and sediment process in watershed.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3