Matchup Strategies for Satellite Sea Surface Salinity Validation

Author:

Westbrook Elizabeth E.1ORCID,Bingham Frederick M.1ORCID,Fournier Severine2ORCID,Hayashi Akiko2

Affiliation:

1. Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC 28412, USA

2. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA

Abstract

Satellite validation is the process of comparing satellite measurements with in-situ measurements to ensure their accuracy. Satellite and in-situ sea surface salinity (SSS) measurements are different due to instrumental errors (IE), retrieval errors (RE), and representation differences (RD). In real-world data, IE, RE, and RD are inseparable, but validations seek to quantify only instrumental and retrieval error. Our goal is to determine which of four methods comparing in-situ and satellite measurements minimizes RD most effectively, which includes differences due to mismatches in the location and timing of the measurement, as well as representation error caused by the averaging of satellite measurements over a footprint. IE and RE were obviated by using simulated Argo float, and L2 NASA/SAC-D Aquarius, NASA·SMAP, and ESA·SMOS data generated from the high-resolution ECCO (Estimating the Climate and Circulation of the Oceans) model SSS data. The methods tested include the all-salinity difference averaging method (ASD), the N closest method (NCLO), which is an averaging method that is optimized for different satellites and regions of the ocean, and two single salinity difference methods—closest in space (SSDS) and closest in time (SSDT). The root mean square differences (RMSD) between the simulated in-situ and satellite measurements in seven regions of the ocean are used as a measure of the effectiveness of each method. The optimization of NCLO is examined to determine how the optimum matchup strategy changes depending on satellite track and region. We find that the NCLO method marginally produces the lowest RMSD in all regions but invoking a regionally optimized method is far more computationally expensive than the other methods. We find that averaging methods smooth IE, thus perhaps misleadingly lowering the detected instrumental error in the L2 product by as much as 0.15 PSU. It is apparent from our results that the dynamics of a particular region have more of an effect on matchup success than the method used. We recommend the SSDT validation strategy because it is more computationally efficient than NCLO, considers the proximity of in-situ and satellite measurements in both time and space, does not smooth instrumental errors with averaging, and generally produces RMSD values only slightly higher than the optimized NCLO method.

Funder

NASA

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3