Climate Change and CO2 Fertilization Have Played Important Roles in the Recent Decadal Vegetation Greening Trend on the Chinese Loess Plateau

Author:

Niu Zhongen1ORCID,He Honglin2,Yu Pengtao3,Sitch Stephen4,Zhao Ying1,Wang Yanhui3,Jain Atul K.5,Vuichard Nicolas6,Si Bingcheng1ORCID

Affiliation:

1. School of Resources and Environmental Engineering, Ludong University, Yantai 264025, China

2. Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

3. Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China

4. Faculty of Environment, Science and Economy, University of Exeter, Exeter EX4 4QF, UK

5. Department of Atmospheric Sciences, University of Illinois, Urbana, IL 61821, USA

6. Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91198 Gif-sur-Yvette, France

Abstract

Vegetation greening has been widely occurring on the Chinese Loess Plateau, and the contributions of human land-use management have been well-understood. However, the influences of climatic change and CO2 fertilization on reported vegetation variations remain difficult to determine. Therefore, we quantified the impacts of multiple factors on vegetation changes for the Chinese Loess Plateau from 2000 to 2019 by integrating satellite-based leaf area index (LAI) and simulated LAI from dynamic global vegetation models. More than 96% of the vegetated areas of the Loess Plateau exhibited greening trends, with an annually averaged satellite-based LAI rate of 0.037 ± 0.006 m2 m−2 a−1 (P < 0.01). Human land-use management and environmental change have jointly accelerated vegetation growth, explaining 54% and 46% of the overall greening trend, respectively. CO2 fertilization and climate change explain 55% and 45% of the greening trend due to environmental change, respectively; solar radiation and precipitation were the main driving factors for climate-induced vegetation greenness (P < 0.05). Spatially, the eastern part of the Loess Plateau was dominated by CO2 fertilization, while the western part was mainly affected by climate change. Furthermore, solar radiation was the key limiting factor affecting LAI variations in the relatively humid area, while precipitation was the major influencing factor in relatively arid areas. This study highlights the important roles that climate change and CO2 fertilization have played in vegetation greenness in recent decades of the Loess Plateau, despite strong influences of anthropogenic footprint.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3