SS-TMNet: Spatial–Spectral Transformer Network with Multi-Scale Convolution for Hyperspectral Image Classification

Author:

Huang Xiaohui1ORCID,Zhou Yunfei1,Yang Xiaofei2ORCID,Zhu Xianhong1,Wang Ke3

Affiliation:

1. School of Information Engineering, East China Jiaotong University, Nanchang 330013, China

2. The Department of Computer and Information Science, University of Macau, Macau 519000, China

3. School of Computer Science, Shenyang Aerospace University, Shenyang 110136, China

Abstract

Hyperspectral image (HSI) classification is a significant foundation for remote sensing image analysis, widely used in biology, aerospace, and other applications. Convolution neural networks (CNNs) and attention mechanisms have shown outstanding ability in HSI classification and have been widely studied in recent years. However, the existing CNN-based and attention mechanism-based methods cannot fully use spatial–spectral information, which is not conducive to further improving HSI classification accuracy. This paper proposes a new spatial–spectral Transformer network with multi-scale convolution (SS-TMNet), which can effectively extract local and global spatial–spectral information. SS-TMNet includes two key modules, i.e., multi-scale 3D convolution projection module (MSCP) and spatial–spectral attention module (SSAM). The MSCP uses multi-scale 3D convolutions with different depths to extract the fused spatial–spectral features. The spatial–spectral attention module includes three branches: height spatial attention, width spatial attention, and spectral attention, which can extract the fusion information of spatial and spectral features. The proposed SS-TMNet was tested on three widely used HSI datasets: Pavia University, IndianPines, and Houston2013. The experimental results show that the proposed SS-TMNet is superior to the existing methods.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference58 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3