Derived Profiles of CCN and INP Number Concentrations in the Taklimakan Desert via Combined Polarization Lidar, Sun-Photometer, and Radiosonde Observations

Author:

Zhang Shuang1ORCID,Huang Zhongwei12ORCID,Alam Khan13ORCID,Li Meishi1,Dong Qingqing1ORCID,Wang Yongkai1,Shen Xingtai1,Bi Jianrong1,Zhang Jiantao4,Li Wuren1,Li Ze1,Wang Wenbiao5,Cui Zhengnan5,Song Xiaodong1

Affiliation:

1. Collaborative Innovation Center for West Ecological Safety (CIWES), Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China

2. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing 210044, China

3. Department of Physics, University of Peshawar, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan

4. Institute of Desert Meteorology, China Meteorological Administration/National Observation and Research Station of Desert Meteorology, Taklimakan Desert of Xinjiang, Urumqi 830002, China

5. Elion Resources Group Co., Ltd., No.15 Guanghua Road, Chaoyang District, Beijing 100026, China

Abstract

Understanding the vertical structures of cloud condensation nuclei (CCN) and ice-nucleating particle (INP) number concentrations in desert source regions is crucial for examining dust-cloud interactions and other related impacts. To explore the vertical profiles of the CCN and INP number concentrations and their possible atmospheric–dynamic influence factors at the center of the Taklimakan Desert, intensive observations were conducted by employing a ground-based polarization Raman lidar, sounding balloons, and a sun photometer in Tazhong (83.39° E, 38.58° N, 1103 m above sea level) during the summer of 2019. Based on the GRASP algorithm, the extinction-to-volume conversion factor of dust aerosols was 0.85 × 10−12 Mmm3 m−3, and the extinction-to-number conversion factor was predicted to be 0.20 Mm cm−3 on the basis of the sun photometer observations. Thus, the vertical CCN and INP number concentration profiles obtained with different parameterization schemes in the presence of various pollution levels were calculated by combining dust extinction coefficients retrieved by lidar and meteorological data observed by sounding balloon observations. The achieved results indicated that the CCN number concentration varied from 10−2 to 102 cm−3 and decreased from ground level to 12 km with an average value of 36.57 cm−3 at the 10–12 km height range, while the INP number concentration based on parameterization schemes D10 and D15 mainly varied from 10−1 to 102 L−1 and from 1 L−1 to 103 L−1, with average values of 3.50 L−1 and 7.80 L−1, respectively. Moreover, we observed a strong relationship between the INP number concentration of scheme D10 and the wind speed, with an R2 value of 0.72, but a weak relationship between the CCN number concentration and the relative humidity in the boundary layer, with a Spearman’s rank correlation coefficient R2 value of 0.38. The present study provides original and valuable information regarding the CCN and INP number concentrations and their related influencing factors at the center of the Taklimakan Desert and can improve our understanding of the vertical distributions of dust–cloud–atmosphere dynamic interactions, as well as of the roles of dust aerosols in the desert hydrological cycle.

Funder

Gansu Provincial Science and Technology Innovative Talent Program, the High-level Talent and Innovative Team Special Project

Second Tibetan Plateau Scientific Expedition and Research Program

National Natural Science Foundation of China

Higher Education Discipline Innovation Project-111 Project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3