MVT: Multi-Vision Transformer for Event-Based Small Target Detection

Author:

Jing Shilong12ORCID,Lv Hengyi1,Zhao Yuchen1,Liu Hailong1,Sun Ming1

Affiliation:

1. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Object detection in remote sensing plays a crucial role in various ground identification tasks. However, due to the limited feature information contained within small targets, which are more susceptible to being buried by complex backgrounds, especially in extreme environments (e.g., low-light, motion-blur scenes). Meanwhile, event cameras offer a unique paradigm with high temporal resolution and wide dynamic range for object detection. These advantages enable event cameras without being limited by the intensity of light, to perform better in challenging conditions compared to traditional cameras. In this work, we introduce the Multi-Vision Transformer (MVT), which comprises three efficiently designed components: the downsampling module, the Channel Spatial Attention (CSA) module, and the Global Spatial Attention (GSA) module. This architecture simultaneously considers short-term and long-term dependencies in semantic information, resulting in improved performance for small object detection. Additionally, we propose Cross Deformable Attention (CDA), which progressively fuses high-level and low-level features instead of considering all scales at each layer, thereby reducing the computational complexity of multi-scale features. Nevertheless, due to the scarcity of event camera remote sensing datasets, we provide the Event Object Detection (EOD) dataset, which is the first dataset that includes various extreme scenarios specifically introduced for remote sensing using event cameras. Moreover, we conducted experiments on the EOD dataset and two typical unmanned aerial vehicle remote sensing datasets (VisDrone2019 and UAVDT Dataset). The comprehensive results demonstrate that the proposed MVT-Net achieves a promising and competitive performance.

Funder

National Natural Science Foundation of China

2023 Jilin Province industrialization project for the specialized program

Publisher

MDPI AG

Reference52 articles.

1. A 240× 180 130 db 3 μs latency global shutter spatiotemporal vision sensor;Brandli;IEEE J.-Solid-State Circuits,2014

2. Delbruck, T. (2008, January 6–7). Frame-free dynamic digital vision. Proceedings of the International Symposium on Secure-Life Electronics, Advanced Electronics for Quality Life and Society, Tokyo, Japan.

3. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., and Dai, J. (2020). Deformable detr: Deformable transformers for end-to-end object detection. arXiv.

4. Du, D., Zhu, P., Wen, L., Bian, X., Lin, H., Hu, Q., Peng, T., Zheng, J., Wang, X., and Zhang, Y. (November, January 27). VisDrone-DET2019: The vision meets drone object detection in image challenge results. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea.

5. Du, D., Qi, Y., Yu, H., Yang, Y., Duan, K., Li, G., Zhang, W., Huang, Q., and Tian, Q. (2018, January 8–14). The unmanned aerial vehicle benchmark: Object detection and tracking. Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3