Landslide Mapping in Calitri (Southern Italy) Using New Multi-Temporal InSAR Algorithms Based on Permanent and Distributed Scatterers

Author:

Famiglietti Nicola Angelo1ORCID,Miele Pietro1ORCID,Defilippi Marco2,Cantone Alessio2,Riccardi Paolo2,Tessari Giulia2,Vicari Annamaria1ORCID

Affiliation:

1. Istituto Nazionale di Geofisica e Vulcanologia, Sezione Irpinia, 83035 Grottaminarda, Italy

2. SarmapSA, 6987 Caslano, Switzerland

Abstract

Landslides play a significant role in the morpho-evolutional processes of slopes, affecting them globally under various geological conditions. Often unnoticed due to low velocities, they cause diffuse damage and loss of economic resources to the infrastructure or villages built on them. Recognizing and mapping mass movements is crucial for mitigating economic and social impacts. Conventional monitoring techniques prove challenging for large areas, necessitating resource-intensive ground-based networks. Leveraging abundant synthetic aperture radar (SAR) sensors, satellite techniques offer cost-effective solutions. Among the various methods based on SAR products for detecting landslides, multi-temporal differential interferometry SAR techniques (MTInSAR) stand out for their precise measurement capabilities and spatiotemporal evolution analysis. They have been widely used in several works in the last decades. Using information from the official Italian landslide database (IFFI), this study employs Sentinel-1 imagery and two new processing chains, E-PS and E-SBAS algorithms, to detect deformation areas on the slopes of Calitri, a small town in Southern Italy; these algorithms assess the cumulated displacements and their state of activity. Taking into account the non-linear trends of the scatterers, these innovative algorithms have helped to identify a dozen clusters of points that correspond well with IFFI polygons.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3