MFACNet: A Multi-Frame Feature Aggregating and Inter-Feature Correlation Framework for Multi-Object Tracking in Satellite Videos

Author:

Zhao Hu12,Shen Yanyun12ORCID,Wang Zhipan12,Zhang Qingling12

Affiliation:

1. School of Aeronautics and Astronautics, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, China

2. Shenzhen Key Laboratory of Intelligent Microsatellite Constellation, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, China

Abstract

Efficient multi-object tracking (MOT) in satellite videos is crucial for numerous applications, ranging from surveillance to environmental monitoring. Existing methods often struggle with effectively exploring the correlation and contextual cues inherent in the consecutive features of video sequences, resulting in redundant feature inference and unreliable motion estimation for tracking. To address these challenges, we propose the MFACNet, a novel multi-frame features aggregating and inter-feature correlation framework for enhancing MOT in satellite videos with the idea of utilizing the features of consecutive frames. The MFACNet integrates multi-frame feature aggregation techniques with inter-feature correlation mechanisms to improve tracking accuracy and robustness. Specifically, our framework leverages temporal information across the features of consecutive frames to capture contextual cues and refine object representations over time. Moreover, we introduce a mechanism to explicitly model the correlations between adjacent features in video sequences, facilitating a more accurate motion estimation and trajectory associations. We evaluated the MFACNet using benchmark datasets for satellite-based video MOT tasks and demonstrated its superiority in terms of tracking accuracy and robustness over state-of-the-art performance by 2.0% in MOTA and 1.6% in IDF1. Our experimental results highlight the potential of precisely utilizing deep features from video sequences.

Funder

Shenzhen Science and Technology Program

National Key Research and Development Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3