Effects of Predominant Tree Species Mixing on Lignin and Cellulose Degradation during Leaf Litter Decomposition in the Three Gorges Reservoir, China

Author:

He ORCID,Ma ,Pei ,Teng ,Zeng ,Yan ORCID,Huang ,Zhou ,Wang ,Luo ,Xiao

Abstract

The aim of this study was to investigate the potential mixing effects on degradation of lignin and cellulose in mixed leaf litter from Pinus massoniana Lamb., Cupressus funebris Endl., and/or Quercus variabilis Bl., and elucidate the interactions with abiotic factors. The litter bag method was used in the field experiment, and the three predominant species in the Three Gorges Reservoir region were treated as single-, pair-, and tri-species combinations with equal proportions of litter mass. Lignin and cellulose losses in the litter treatments were measured, and the mixing effects were evaluated based on the sampling phase and decomposition period. At the end of the one-year decomposition period, mixing species increased lignin loss by 3.3% for the cypress + oak combination and cellulose loss by 3.9%, 1.8%, and 0.8% for the pine + oak, cypress + oak, and pine + cypress + oak combinations, respectively. The pine + oak and cypress + oak combinations exhibited greater lignin and cellulose loss than the tri-species mixture. Accelerated lignin degradation also apparently occurred in the pine + cypress combination as decomposition proceeded. Generalized linear models suggested that the investigated environmental factors (in terms of average temperature and cumulative precipitation) and changing litter quality (lignin, cellulose, and lignin/cellulose) had significant effects on nonadditive lignin loss, whereas only the changing litter quality factors significantly affected nonadditive cellulose loss. In summary, mixing two or three of the studied species alters cycling of recalcitrant substrates in plantations, and mixed planting with Quercus appears to strengthen both the lignin and cellulose degradation processes.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3